addition and subtraction

How to Use An Abacus to teach Addition and Subtraction

Do you want to learn how to use an abacus to teach addition and subtraction? Well, I have just made it easy for you. In this article, I explained what an abacus is, types of abacus and how to use it in teaching mathematics. Let’s get right into it.

Abacus is one of the oldest techniques for counting which teachers may use to teach addition and subtraction. It is a free, open-source tool that helps students to learn arithmetic. The teacher can present the problem on the board, and then ask the students to work out the answer on their own using the Abacus tool.

The teacher can also use it for self-testing or for giving homework assignments. In this article, I will be explaining how teachers may use Abacus as a mathematics tool for teaching addition and subtraction.

Abacus Definition

An abacus is a calculating tool that is used to perform arithmetic functions. It is a math tool that represents numbers using lines of beads. You can calculate and display various figures by shifting the beads. It’s a tactile and visual method whereby touching or seeing the beads you can easily tell the answer. As a result, abacuses are excellent teaching tools for students with a variety of learning preferences and are especially helpful for the blind and partially sighted.

Considered to be the first calculator, an abacus is sometimes referred to as a counting frame. Abacuses have been used by humans for thousands of years, and numerous varieties have emerged during this time.

Brief History of an Abacus

An abacus is an ancient calculator that was first invented in the third century BC. It is a calculating tool and is used to perform arithmetic functions.

The abacus has been around for centuries and it’s still being used today. It was originally invented in Babylon and China but it’s now most commonly found in Japan, Korea, Taiwan, Thailand, and Vietnam.

An abacus has two rows of beads that represent numbers from 0 to 9. The beads are moved up or down the columns of rods to represent different numbers. For example, if you want to add 5 + 2 on an abacus you would move the bead on the right-hand side of the rod five spaces up and then move the right-hand bead on the left-hand rod two spaces up.

The abacus is a tool that can be used to teach children to count and learn math concepts. With the use of this tool, children are able to learn basic arithmetic skills faster than with other methods.

Types of Abacus

There are simply too many different kinds of abacuses to discuss, but three of them are most frequently used to teach addition and subtraction. School Abacus, modern abacus and place value abacus. Let’s get started.

The School Abacus

This is the common name for the sort of abacus that may have initially come to mind when you arrived at this website. Ten distinctive beads are arranged in horizontal rows on a school abacus.

As a result of the beads pointing across rather than up and down, it most closely resembles the Russian Abacus style. They make excellent toys and are excellent for teaching elementary math and counting.

The Modern Abacus

We’ll use this name to refer to the type of abacus that has a separating bar running vertically (up and down) across all of the columns. These abacuses are based on Chinese and Japanese patterns. The separating bar has a spacing of five beads above it and one bead below it.

Depending on the kind you use, there are a variety of beads. The beads will have four or five beads below the bar and one or two beads above the bar (the fives) (the ones). We’ll discuss how to use a modern (or Soroban) abacus in this article, which has four beads at the bottom and one bead at the top.

The procedure is the same regardless of the quantity: you count only the beads that touch the separation bar.

The Place Value Abacus

A place-value abacus likewise contains vertical rods for the beads, but unlike the other types, this one does not keep them in a frame. In an open abacus, beads can be totally removed as opposed to simply sliding them into a different position.

These abacuses were created especially for dividing numbers. If you had more poles, you would continue placing beads in this order: ones on the rightmost pole, tens on the left, hundreds on the left of those, and so forth. A place-value abacus typically has two or three.

Every type of Abacus requires an understanding of place value because each row, wire, or pole corresponds to a different set of units in your calculation. But this can work best for you if your main goal is to analyze place value.

How to Use An Abacus to do Addition and Subtraction?

Abacuses are excellent counting devices and can make excellent math tools. Using an abacus to solve adding and subtracting problems is known as abacus addition and subtraction.

It is best advisable to get started by setting your numbers first. Consequently, the Abacus must display the initial value. Then, count the beads according to the number you are adding or subtracting. You’ll either add more beads to the group (addition) or bring some of your initial beads back (for subtraction) Depending on the type of Abacus, you may need to move them in a specific way, but always move them into or out of the part you are counting.

When you do that, the abacus will already display your response! You must count the beads that you can see or feel in your counting area.

Perhaps you are still working on your addition or subtraction. That is not an issue. You can proceed with additional calculations since your answer serves as your new set number. An abacus is the ideal tool for keeping track of a lengthy list of numbers that need to be added or subtracted.

It’s fantastic if you feel confident enough to start adding and subtracting on the abacus now. Continue reading as we go over how to add and subtract on an abacus in more depth to learn more.

How to Use School Abacus to do Addition and Subtraction

Addition and Subtraction on a school Abacus

On a school abacus, all the beads you don’t want to count are neatly stored on the opposite side of the frame from your counting area. Choose a side that works best for you and your kids, but stick with it; you don’t want to lose track of which side you’re counting.

To reset the Abacus to zero, move all of your beads to the side that is not used for counting. After there, decide if you want your ones to be at the top or bottom. Start at the bottom with your tens, hundreds, thousands, and so on above you, or start at the top and decrease the place value as you go down.

Now you can go on to set your numbers. Transfer the appropriate number of beads to your counting side. For instance, if you want to set six, count out six beads and slide them to your counting side while arranging them in a row along your ones (or units) row.

If you wanted to add two, for example, you would add two more beads to the row. On the counting side of that row, you would then have eight beads. That is your response. 6 + 2 = 8.

You must switch them out whenever you have a full row by repositioning them to the non-counting side and using a bead from the following row to represent ten. On your abacus, try counting up to twelve. When you reach number ten, move these all back and place a ten bead on the counting side. Then, as you move two more beads across the one’s row, continue counting to numbers eleven and twelve. You can use this to add digits that total more than nine.

Ok. For example, you want to set three hundred and forty two (342), how do you go about it?

To do this, you must move two beads on the row of ones, four beads on the row of tens, and three beads on the row of hundreds. You would move across an additional hundred beads, two tens beads, and five ones beads to add one hundred and twenty-five. At this point, the beads on your abacus would read four on the hundreds, six on the tens, and seven on the ones. What does your response imply? 342 + 125 = 467.

How to do Subtraction on a School Abacus

It’s the same, but the opposite! To remove numbers, move your beads back to the beginning from the counting side. In order to calculate six less two, you would still arrange six pieces and then move two of them back across. The solution is four beads since that is all that is left on your counting side.

Again, larger numbers result in the same result. Taking the 466 from previously, let’s move forward. Move six beads from the tens row back across to equal sixty. You currently have 400, no tens, and seven ones. But remember the tens row, too!Not 467 – 60 = 47 is the solution. The empty rows between your other place values should be counted as well. Actually, your abacus is telling you that 467 – 60 = 407.

But what happens if a row is less than zero? That can also be worked out. Recall the time we exchanged a whole row of 10 beads for one bead on the row after it. Now we want to swap one bead for 10 beads on the row before it in the opposite direction.

Consider subtracting five from twelve. Set twelve first, using a tens bead and two units. You should now reassign five ones to the non-counting side.

You won’t have any more unit beads to move once you’ve moved beads one and two. Therefore, remove a tens bead from the counting area and place all ten beads in its place. Beads three, four, and five can now be moved back out to finish the puzzle. There will be seven beads in the row of ones and none in the row of tens. We calculated that 12 – 5 Equals 7.

This is why using an abacus is a superb option if your kids find it difficult to comprehend how to carry over numbers in challenging sums. In order to adapt the notion to written working out (like the column technique) in the future, this provides them with a multimodal manner to understand why the concept works.

How to Use Modern Abacus to do Addition and Subtraction

Read through the last section to make sure you comprehend the fundamental concepts involved in using a modern abacus because they are the same. The same movement procedures are being used, and there are still several wires for place value. Instead of moving beads side to side, we now move them up and down, and the separating bar serves as the counting area.

Select the wire you will be using for units once more. Typically, we utilize the center bar to give room for decimals on the right and larger place values on the left. By raising the bottom beads one at a time toward the separation bar, you can now count. This enables you to count from 0 through 1, 2, 3, and 4.

When you reach number five, you must move all four of these beads down one more in order for the top bead to touch the bar. The bottom beads can then be raised one more to count from six to nine. To reach 10, you must first return all the beads to their starting locations and then slide a bottom bead up and to the left on your tens wire.

The key distinction with this technique is that you aren’t just switching from one method of representing five or ten to another. Every time you make one of these changes, the Abacus shows a new result, either moving up or down. With modern abacuses that have more beads per wire, you will perform standard swaps, just like you would on a school abacus.

Now that you know how to use a modern abacus, you’re ready to practice addition and subtraction by repositioning various bead counts in relation to the separation bar. Remember what we did with the school abacus if you find yourself in a sticky situation.

How to Use Place-Value Abacus to do Addition and Subtraction

It’s time for a break. If you mastered the examples above, you would be an expert at using the place value abacus. Set, add, and subtract numbers by dividing them, adding or removing beads from the poles, and so forth.

Using a place value abacus to find the difference while holding onto the beads you remove is an exciting option. You can count how many beads need to be removed from each pole to perform a subtraction by starting the Abacus at the second number and moving forward from there.

Conclusion

An abacus is a great way to teach your students about addition, subtraction and place value. Teachers are adopting this old technique because it helps children to understand how numbers work together.

It is a tool that can be used to teach children about numbers, addition, subtraction and multiplication which will help them with their mathematics skills in the future. With the detailed information explained above on how to use the three major types of Abacus, you’re good to go.

 

Leave a Comment

Your email address will not be published. Required fields are marked *